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PROBLEM

 1.2 Given point P(−2, 6, 3) and vector A = y a
x
 + (x + z) a

y
, express P and A in spherical coordinates. 

Evaluate A at P in Cartesian and spherical systems.

At point P;  x = − 2;  y = 6;  z = 3

r = x y z2 2 2+ + ; q = tan−1 
x y

z

2 2��

�
�

�

�
�

f = tan−1 (y/x)

r = �� � � � � � � � � � � � �2 6 3 4 36 9 49 72 2 2

q = tan−1 
x y
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q = 64.62
f = tan−1 (6/−2) = 108.50

P (−2, 6, 3) = P (7, 64.620, 108.50)

(ii) A = y a
x
 + (x + z) a
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Figure 1.18 A view of spherical 
coordinates in (Z – r) – plane.
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(A
r
, Aq , Af) = (−0.824, − 0.411c, − 6)

1.4 INTRODUCTION TO SCALAR AND VECTOR
Pressure is defined as force per unit area

P = (F/A) N/m2 (or) Pascals

where, P  = Pressure, F = Force and A = Area

PROBLEM

 1.3 Consider a unit area (1m2), which is subject to a pressure of 20 N/m2 and 30 N/m2. Find the 
resultant pressure. fig (1.20)

20 N/m 30 N/m

Figure 1.20 Pressure acting normal to the surface.

Resultant Pressure = 20 + 30 = 50 N/m2

 1.4 Consider a unit area (1 m2), which is subjected to a pressure of 20 N/m2 and 30 N/m2 at 450 to 
the surface. Find the resultant pressure. fig (1.21)

F1

F1

F2
θ

F2y
F2

F2yF2x

F2x

Figure 1.21 Pressure acting at an angle to the surface.

 Though pressure is a scalar quantity, since the directional information is given for the second 
one, we cannot simply add as in the previous case.
 Let’s resolve the 2nd pressure quantity into horizontal component F

2x
 and vertical component F

2y
.

F
2y

 = F
2
 cos 45 = 30 (cos 45) = 21.21 N/m2

F
2x

 = F
2
 sin 45 = 30 (sin 45) = 21.21 N/m2
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Resultant pressure = F
1
 + F

2y
 = 20 + 21.21

                                                                 = 41.21 N/m2

 Please note that pressure becomes force, when subjected to a unit area. Force is a typical vector.
When directional information is given for a scalar quantity, we need to assess if scalar operation 
or vector operation (like vector addition, subtraction etc.) needs to be performed for it.
 If no directional information is given, then we can treat the scalar as scalar itself.
 Let’s take a physical quantity in electrical engineering side. Voltage (or electrical pressure) is 
typically a scalar quantity. In the case of DC voltage, there is only scalar addition and no concept 
of vector addition. But in AC analysis, when there is a phase shift between 2 voltage sources,  
we cannot do a simple scalar or algebraic addition. It necessarily has to be a vector addition.

 1.5 Find the resultant voltage, if the DC voltage sources are in series as given below:

20 V

60 V

30 V

100 V

VR

VR = 20 + 60 VR = 30 + 100 = 130 volts
VR = 80 volts.

VR

Figure 1.22 Summation of DC voltages.

 1.6 Find the resultant voltage for the series connected AC voltage sources given below:

VR VR

V1 = 230∠0°

(a) (b)

V2 = 115∠45°

V1 = 230∠0°

V2 = 115∠0°

 

Figure 1.23 Vector addition of AC voltages.

Ans (a): As there is a phase shift of 450 between voltage V
1
 and V

2
, we need to follow vector law of 

addition V
R
 = V V1 2

��� � ��
+  and not algebraic addition V

R
 = V

1
 + V

2
.

V V VR = +1 2

��� � ��
 = V V V V1

2
2
2

1 22+ + cosq   (q = 45°)

V
R
 = 230 115 321 8

2 2( ) + ( ) =+ 2 (230) (115) (cos 45 ) V° .  

Ans (b): As there is no phase difference, the 2 voltage sources can be added algebraically (i.e) 
scalar addition. Even vector addition will give you the same result.

V
R
 = V V V V1

2
2
2

1 22+ + cosq

as θ = 0°, cos 0 = 1,

 ⇒ = + + = +V V V V V V VR 1
2

2
2

1 2 1 22  = ( )V V1 2
2+⇒ = + + = +V V V V V V VR 1

2
2
2

1 2 1 22

V
R
 = V

1
 + V

2
 = 230 + 115 = 345 volts.
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18 ELECTROMAGNETIC THEORY

1.4.1 Scalar and Vector Field
Scalar has only magnitude, and has no direction or reference to direction. (N.B : magnitude refers to positive 
or negative value).

Example of scalars are distance, temperature, mass, density, pressure.
A vector may be defined in a 2 dimensional, or 3 dimensional space in simple application or in  

N – dimensional space, in more advanced application. Vector has both direction and magnitude. Example of 
vectors are force, velocity, acceleration.

Field is a physical quantity that has a value for each point in space and time. If each and every point has 
a value and direction associated with it, then it becomes a vector field. If it has only value and no speci-
fication of direction, it becomes a scalar field.

Field: Field concept invariably is related to a region in space. The space, which is under the influence 
of field contains energy. A field may be defined mathematically as a function of a vector, which connects an 
arbitrary origin to a general point in space.

We usually recognize the presence of the field by some physical effects associated with it.
Eg. Gravitational field affects mass, electric field affects charge, etc.

 1. Force on compass needle indicates the earth’s magnetic field.
 2. Movement of smoke particles in air indicates the velocity vector field of air in the region.

 (i) Temperature distribution throughout the region of space. Eg near a furnace.
 (ii) Distribution of air density in the earth.

1.4.2 Vector Field

Examples are gravitational field, magnetic fields, electric field or voltage gradient. The value of field varies 
in general with position and time.

If two same or related vector fields are super imposed on one another, we should add or subtract the 
vectors, which are defined at that point vectorially, (not algebraically).

1.4.3 Physical Meaning of Divergence and Curl
For the following configuration of the flux lines / field, the divergence and curl are defined as follows.

Field Configuration Mathematical 
 Representation

Physical Interpretation

(i) 

F = K i
∧

F = ki�

∇ • F = 0
∇ × F = 0

F is not diverging
F is not rotating
Eg. Magnetic field of earth near/at Equator.

(Continued)

A vector quantity defined throughout the region or space is called vector field. 

Scalar field: A scalar quantity defined throughout the space or region, forms scalar field.
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Field Configuration Mathematical 
 Representation

Physical Interpretation

(ii) ∇ • F ≠ 0 but ‘ +’ ve
∇ × F = 0

Field “F” is diverging
F is not rotational
Eg. Field around a positive charged particle

(iii) ∇ • F ≠ 0 and ‘−’ve 
∇×F = 0

F is converging
F is irrotational
Eg. Field around a negatively charged  
particle.

(iv) 

⊗

∇ • F = 0 
∇ × F ≠ 0
∇ × F < 0 or ‘−’ve

F is not diverging
F is rotational
Field F rotates in clockwise direction
Eg. The magnetic field around a current 
carrying conductor. Current I going into the 
page.

(v) ∇ • F = 0
∇ × F ≠ 0
∇ × F > 0 or ‘+’ve

F is not diverging
F is rotational
Field F rotates in anticlockwise direction
Eg. The magnetic field around a current 
carrying conductor. Current I, coming out of 
the page.

(vi) ∇ • F≠ 0 and ‘ + ’ve 
∇×F ≠ 0
∇ × F = 0 ‘-’ve

F is diverging
F is rotational field; F rotates in clockwise 
direction.
Eg. Water in a washing machine or grinder.

(vii) ∇ • F ≠ 0 and ‘−’ve 
∇×F ≠ 0
∇×F = ‘+’ve

F is converging
F is rotational
Field F rotates in anticlockwise direction.
Eg. Water in a whirlpool/ air in Tornardo or 
storm.

NOTE: Solenoidal/field (or) Divergenceless field or Incompressible field is given by ∇• F = 0.
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PROBLEM

 1.7 Check if the following vector field is rotational or irrotational; diverging or converging;
F(x, y) = (1000/(1 + x2)) i� + (2000/(1 + xy2)) j�

For a field to be rotational, ∇ × F ≠ 0

∇ × F = 

i j k

x y z

x xy

� � ˆ

∂
∂

∂
∂

∂
∂

+ +
1000

1

2000

1
02 2

= i� 0
2000

1 2−
+

















∂
∂z xy

 − j�  0
1000

1 2−
+













∂
∂z x

+
∂
∂ +







−
∂
∂ +















k̂

x xy y x

2000

1

1000

12 2

= i� [0−0] − j�  [0−0] +
∂
∂

+( ) −





−
k̂

x
xy2000 1 02 1

=
∂
∂

+( )





= −( ) +( ) ( )





∇ ×

−

−

ˆ

ˆ

k
x

xy

k xy y

F

2000 1

2000 1 1

2 1

2 2 2

== −
+( )















2000

1

2

2 2

y

xy
k̂

 Hence the given vector field is rotational.
“∇ × F” always takes only negative value for all values of x and y except for X = − 1 and y = ± 1, 
where it becomes infinity. As ∇×F is negative it rotates in clockwise direction.

∇ • F = ˆ ˆ ˆi j k
x y z

∂
∂

∂
∂

∂
∂

+ +





 • 

1000

1

2000

12 2+
+

+




x

i
xy

j� �

=
∂
∂ +







+
∂
∂ +







+
x x y xy

1000

1

2000

1
02 2

= 
∂
∂

( ) +( ) ∂
∂







( ) +( ) ++
− −

x
x

y
xy1000 1 2000 1 02 1 2 1

= (1000) (−1) (1 + x2)−2 (2x) + (2000) (1 + xy2)−2 (x2y)

∇ • F = 
-

+( )
+

+( )
2000

1

4000

12 2 2 2

x xy

xx y

∇ • F ≠ 0 the field F is diverging or converging depending upon the value of ∇ • F being positive or 
 negative, respectively.
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 So the vector field defined by the function

F(x, y) = 
1000

1 2+




x

i�  + 
2000

1 2+




xy

j�

 Is rotational and converging (or diverging) depending on the value of x and y.

 1.8 Check if the following fields are rotational or irrotational.

 (i) F x y i y x j= +2 2� �

    ∇ × F = 

i j k

x y z

yx y x

� � ˆ

∂
∂

∂
∂

∂
∂

2 2 0

 = i� 
∂
∂

∂
∂

( ) − ( )







y z

y x0 2  − j�  
∂
∂

∂
∂

( ) − ( )



x z

x y0 2 + ( ) − ( )









∂
∂

∂
∂

k̂ y x
x y

x y2 2

= i� [0−0] − j�  [0−0] + k̂(y2 − x2) = k̂(y2 − x2)

  The field F is rotational for all points, except at x y= . At x = y, ∇ × F = 0, and the field becomes 
irrotational.

 (ii) F x yi y x j= − +2 2� �

∇ × =
∂
∂

∂
∂

∂
∂

−

F

i j k

x y z

x y y x

� � ˆ

2 2 0

= i� 
∂
∂

∂
∂

( ) − ( )







y z

y x0 2  − j�  
∂
∂

∂
∂

−( ) − ( )



x z

x y0 2

 
+ ( ) − ( )









∂
∂

∂
∂

−k̂ y x
x y

x y2 2

= i� [0] − j�  [0 − 0] + k̂(y2 – (−x2)

= k̂(y2 + x2)

∇ × = +F ( )x ky2 2 ⋅k̂

  ∇ × F is always positive and hence the field defined by function F is rotational (in anticlockwise 
direction).

 1.9 Check if the field is compressible or incompressible / (Solenoid or not):

F x yi y x j= − +2 2� �

ÑiF  = i
x

j
y z

k� �∂
∂

∂
∂

∂
∂

+ +








ˆ . − +( )x yi y x j2 2� �

= -( ) + ( )¶
¶

¶
¶x y

x y y x2 2

= − + = − =2 2 2 2 0x y y x xy xy⋅ ⋅ .

So the field is solenoidal or divergence free or incompressible vector field.
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1.5 GRADIENT, DIVERGENCE AND CURL 1, 2

The vector operator “∇” is defined as

∇ = i
x

j
y

k
z

� �∂
∂

∂
∂

∂
∂

+ + ˆ

This operator when applied on a scalar function gives gradient, the dot product of it when applied it to 
a vector function gives divergence and the cross product of it when applied to a vector function gives curl.

We will now see the physical meaning of
  1. Gradient; 2. Divergence and 3. Curl.

1.5.1 Gradient
Let f(x, y, z) be a scalar function defined throughout the space and let’s

Assume that 
∂
∂

∂
∂

∂
∂

f f f
x y z

, .and exists

∇ =
∂
∂

+
∂
∂

+
∂
∂







f fji
x y

z
z

� � �

ˆ=
∂
∂

+
∂
∂

+
∂
∂







i
x

j
y

k
z

� �f f f

∇f is a vector and it gives the greatest rate of increase of the scalar function, f.

∇f =
 

ˆ ˆ ˆ ˆi
x

j
y

k
z

d

dn
n

∂
∂

+
∂
∂

+
∂
∂







=
f f f f

Where n̂ is the unit vector normal to the surface.
In short, we apply the operator “∇” to a scalar function to find the greatest rate of change of that func-

tion in magnitude and direction, at every point in space.

1  (b) Write short notes on the following:
 (i) Gradient (4)
 (ii) Divergence (4)
 (iii) Curl and (4)
 (iv) Stokes’s theorem. (4)
  (A.U. B.E/B.Tech; Nov/Dec 2010; 3rd Sem; EEE – EMT; EE 2202; Reg – 2008).
2 (a) Write short notes on the following:
 (i) Gradient
 (ii) Divergence
 (iii) Curl and
 (iv) Stokes’s Theorem (16)
  (A.U. B.E/B.Tech; Nov/Dec 2013; 3rd Sem; EEE – EMT; EE 2202; Reg – 2008).
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a) Proof: Consider a scalar function f (x, y, z) = c
For different values of c, it produces a family of surfaces.
Assuming that f is a single valued function, only one surface 

will pass through point “P” and “Q”.
Let the value of flux at point P be “f ” and point Q be “f + ∇f”
Let r = x î  + y ĵ + zk̂

dr = dx î  + dy ĵ + dzk̂

∇f = ˆ ˆ ˆi
x

j
y

k
z

∂
∂

∂
∂

∂
∂

+ +






f

= ˆ ˆ ˆi
x y z

j k
∂
∂

∂
∂

∂
∂

+ +






f f f

∇f.dr = ˆ ˆ ˆi
x y z

j k
∂
∂

∂
∂

∂
∂

+ +






f f f
.(dx î  + dy ĵ + dzk̂)

= 
∂
∂

∂
∂

∂
∂

+ +
f f f
x

dx
y

dy
z

dz

  ∇f.dr = df (1)

Let n
�
 be the unit vector, which is perpendicular to P and angle between ∆n and ∆r is q.

∆n = (∆r cos q) n̂
= n̂ riD  (dot product)

  dn = n̂ dri  (2)

when the change is small,
∆n → dn, and ∆r → dr.

The differential df of the function f (x, y, z) can be written as

df = 
d

dn

f
 dn

from equation (2), we have,

 df = 
d

dn

f




 (n̂.dr) ∵dn n dr=( )ˆ ⋅  (3)

Equating (1) and (2), we get,

∇f .dr = 
d

dn

f



 n̂.dr

If we remove the dot product, the equation becomes

∇f  = 
d

dn

f



 n̂

Gradient of function f, “∇f” is the rate of change of f with respect to the normal “n”, in the direction of “n”.  
In other words, it is the greatest rate of increase of the scalar function f.

Figure 1.24 Meaning of Gradient.

R

n

P
(x, y, z)

O

Q

θ

φ

r + ∆r→ →

φ + ∆φ

r →

∆n → ∆r →

∧
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1.5.2 Divergence

D

A Edy

dx

dz

Vy

Vz

Vx

p1 p2

 F
B

p

C G

H

dy
2

dy
2

Vy − dy
2

∂Vy

∂y
Vy + dy

2

∂Vy
∂y

Figure 1.25 Fluid flow in cuboid of dimension dx, dy, and dz.

Let the instantaneous velocity V, of the fluid at a point P (x, y, z) be a vector function represented by 
V = V

x i�  + V
y

j�  + V
z
k� .

Let’s consider a small rectangular parallelopiped of side dx, dy, and dz parallel to the axes such that P 
is at the midpoint of the enclosed volume.

Amount of fluid passing through one face sec/  = Area of the face x velocity component perpendicular to it.

At point P
1
, which is middle of left face ABCD, we have velocity function

 V y dy V
dy V

yy
y−





= −





∂
∂







1

2 2
 (1)

Similarly point P
2
, we have

 V y dy+





1

2
 = V

y
 + 

dy V

y
y

2






∂
∂







 (2)

The amount of fluid entering the left face ABCD,

 = dx dz V
dy V

yy
y−

∂
∂





2
 (3)

Similarly, the amount of fluid leaving the right face

 EFGH = dx dz
 

V
dy V

yy
y+

∂
∂












2
 (4)

Hence, the net increase (or decrease) in the amount of fluid in the parallelopiped across the two faces 
is given by (4)−(3)

= dx dz

 
V

dy V

y
dxdz V

dy V

yy
y

y
y+

∂
∂















 − −

∂
∂

















2 2

=
∂
∂







V

y
y  dx.dy.dz
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Similarly, the net increase (or decrease) of fluid across the other surfaces is given by

=
¶
¶

æ
è
ç

ö
ø
÷

V

x
x  dx dy dz

=
¶
¶

æ
è
ç

ö
ø
÷

V

z
z  dx dy dz

The total increase (or decrease) of fluid in the parallelopiped per unit time is given by

= 
∂
∂

+
∂
∂

+
∂
∂







V

x

V

y

V

z
x y z dxdydz

Total increase (or decrease) of fluid per unit time per unit volume is given by

=
¶
¶

+
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¶
+

¶
¶
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÷

V
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dx dy dz
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x

V

y

V

z
x y z

Diverging 
Outflow−inflow = (3 − 7 = −4) Outflow−inflow = (5 − 5 = 0)

Planar
(ii)  ∇  F = 0 .

Figure 1.26

Divergence of a vector: Divergence of a vector gives the rate at which fluid or flux is originating at a 
point per unit volume.

The operator div, when applied to a vector function V, gives at each point, the rate per unit volume at 
which the physical quantity is issuing from the point,

If ÑiV  = 0, then we say that “V” is an incompressible fluid or “V” is solenoidal
If V is a function defined and differentiable at each point of space and V is expressed as

V (x, y, z) = V
x
 î  + V

y
ĵ + V

zk̂

∇ = + +






∂
∂

∂
∂

∂
∂

ˆ ˆ ˆi
x

j
y

k
z

Ñ iV  = + +






∂
∂

∂
∂

∂
∂

ˆ ˆ ˆi
x

j
y

k
z

. V V j Vi kx y z
ˆ ˆˆ+ +( )

∇ =
∂
∂

+
∂
∂

+
∂
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iV
V

x

V

y

V

z
x y z
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