Electromagnetic
Waves

5.1 WAVE

If a physical phenomenon that occur at one place at a given time is reproduced at later time at another
place, the time delay being proportional to the space separation from the first location, then that group
of phenomena constitute a wave.

5.1.1 Longitudinal Wave and Transverse Wave

In a transverse wave, the direction of vibration is perpendicular to the direction of propagation of wave. In
an electromagnetic wave, electric field vibrates in one direction (X—axis), magnetic field vibrates in another
direction (Y—axis) perpendicular to it, while the direction of propagation of wave along Z—axis is perpen-
dicular to the direction of vibration of electric and magnetic field.

Field\Axis X-axis Y-axis Z—axis
Field E H Propagation of wave
Field H E Propagation of wave
Field E Propagation of wave H
Field H Propagation of wave E
Field Propagation of wave E H
Field Propagation of wave H E

E = Electric field
H = Magnetic field.

In a longitudinal wave, the direction of vibration is parallel to the direction of propagation of wave.
Example of longitudinal wave is sound wave.

171
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172 ELECTROMAGNETIC THEORY

5.1.2 Plane Wave: Electromagnetic Waves are Transverse Waves

A uniform plane wave is one which satisfies the following conditions:

(i) At every point in space £ and H are perpendicular to each other and to the direction of
propagation.
(i) The fields vary harmonically with time and at the same frequency, everywhere in space.
(iii)) Each field has the same direction, magnitude and phase at every point in any plane perpendicu-
lar to the direction of wave propagation.

y

7 Direction of
propagation

Figure 5.1 Plane EM wave.

5.2 ELECTROMAGNETIC WAVE GENERATION

First, let’s see how an oscillating dipole produces an electromagnetic wave.

A dipole consists of two equal and opposite charge separated by a small distance. An electric dipole
points from the negative charge to the positive charge.

Let’s see how the electric flux lines are oriented as the electric dipole oscillates.

(i) =0

Figure 5.2 Dipole at {=0.

Fig (i) shows the direction of flow of electric flux lines from top to bottom. Flux lines on the left hand side
of the dipole are not shown.
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.. 1
n) t=-=-T
(i1) g

Figure 5.3 Dipole oscillation at {= %T.

When the dipole is quickly rotated to 45°; we have electric flux configuration as shown above
and below.

As the charges are separated by a small distance, and the frequency of oscillation is very fast
then the charge movement can be shown along a straight line and electric flux lines shown as
in diagram 5.4. The direction of current flow and the corresponding magnetic field direction is
given below.

_1
@1ii) (b) t= 2 T

Figure 5.4 Dipole oscillation at {= %T.

In figure 5.5, the dipole is at the point of reversing the direction. At that point, the electric flux
lines form closed loops.

PA (% e

_1
tsz

. 1
i) t=-T
(iv) p

Figure 5.5 Dipole oscillation at t= %T
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v) t—8T

ph@%@; ) ——%
3)T

t= (§
Figure 5.6 Dipole oscillation at time = gTEM wave formation.
In figure 5.6, as the position of positive and negative charges changes, the direction of flux lines
also changes, from bottom to top. The new flux lines repulses or pushes the old flux lines away
from it, as evidenced in the diagram. The old closed flux lines travels through space with speed C.

Magnetic field in dipole Oscillation: In all the diagrams, 5.3,
5.4 and 5.5, the positive charge moves or oscillates from top to
bottom. In effect, a current ‘i’ flows downwards, from top to
bottom. This set’s up a circular magnetic field, with the direc-
tion of field marked as shown.
O represents magnetic field coming out of the page. i
® represents magnetic field going into the page.
For an observer at point (Z), Fig 5.6 the wave moves towards
him and the electric and magnetic field are oriented as shown
below.

Figure 5.7 Magnetic field
in Dipole Oscillation.

Figure 5.8 Orientation of Electric field E and Magnetic field H.

Electromagnetic wave (EM wave) comes out of the page.

t=0 t=1T/8 t=T/4 t=3T/8 t=T72

IP—P IP:

max

lote |
P |4P—>0| yP=——7P P=-P

max Q- max N max

N | =
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5.2.1 EM Wave Generation by Electric Dipole Antenna

From time =0 Fromtimet:—T
" : to1=-L w0i=1 °
E ﬂ (] P (o] .
A ; 4 T A A
0 e T ]
4 2 .
' +
l :
B 0 4 ' B B
, r 3T T
| 5 4
Figure 5.9

Instead of an oscillating dipole, if we have a fixed dipole with oscillating voltage, (i.e) time varying
charge, it produces the same effect as that of the oscillating dipole and EM waves are generated.

Just like an oscillating dipole, till time “7/2”, “A” remains positive, while “B” is negative. From time
T/2 to T, the polarity get reversed and “A” becomes negative, while B becomes positive.

The electric dipole moment P increases from zero to maximum from time ¢ = 0 to ¢ = 7/4. It again
decreases from maximum to zero from ¢ =T/4 to ¢ =T/2.

As can be seen in the diagrams above the same variation of electric dipole moment is obtained by sup-
plying an alternating voltage as that of oscillating an electric dipole.

This is how the electromagnetic wave is created by an electric dipole antenna.

A coaxial cable terminated with two wire arrangement as shown below forms a typical electric dipole
antenna.

A

% t=0 =718 | t=T4 | t=318 | t=102

P=04 P=pm—‘“IP=Pm I p = Pon I P=0Y
B 2 ax

2

Figure 5.10 An electric dipole antenna with electric dipole variation.

The voltage across the two protuding wires varies sinusoidally, producing a time varying electric
dipole moment ‘P’. This time varying electric dipole moment “P”, produces the electromagnetic wave.

SI. No. Charge Current Fields

1. Stationary charges Zero Electrostatic field

2. Charges moving with constant velocity ~ Steady current Magnetostatic field

3. Charges moving back and forth. Dipole (or) AC current Electromagnetic waves

Chapter 5.indd 175 @ 3/26/2015 11:51:45 AM



176 ELECTROMAGNETIC THEORY

5.2.2 Polarization of Electromagnetic Wave

The direction in which the electric field is oriented is called the polarization of a Transverse Electromagnetic
(TEM) wave. In our example in fig 5.1, the wave is polarized, along x-axis.

Usually the orientation of electric field “E”, is specified as a function of time and space. With this it is
possible to derive the equation for orientation of magnetic field using Maxwell’s equations and the direction
of propagation of wave, as they are mutually perpendicular to one another.

5.3 ELECTROMAGNETIC WAVE EQUATION' DERIVED FROM
MAXWELL’S EQUATIONS (FROM FARADAY’S LAW)!#

By Faraday’s law, we have,

OB OH
VXE——[EJ——,U(E). (1)

Taking curl on both sides

Vx(VxE):—,qu(a—Hj. 2)
ot
=- 2(VxH) A3)
“at
oD ,
But, VXH=J+(¥) (from Ampere's law) 4)
0 oD
Vx(VxE)=—-u—| J+—1|.
*(VxE) “at( +6t)
0 oE
= —UU— E i
”at(a +68tj
o[ 2] veE
oW ) 750 |
.. a(a_E)+ga2_E
%y o’ |
oE JO’E
VX(VXE)=-uc—-— — . 5
x(VXE) o= ,us(atzj (5)

L.H.S. can be written as

Vx(VxE)=V(V-E)-V*E

"From the Maxwell’s equation, derive the electromagnetic wave equation in conducting medium for E and H fields.

(10)
(A.U. B.E/B.Tech; Nov/Dec 2012; 4th Sem; ECE EC 2253; Reg — 2008).
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= V(l V-D) -V?E.
&

For a conductor, which is not conducting any current now, we have p = 0; =V:D=p=0
= Vx(VxE)=-V’E. (6)

Substituting equation (6) in (5), we have.

0E) 0’E
e = o 2 )e 22 | 7
u[ ot or* )
Considering a region which has no charge in space, (i.e) p = 0, we have
oE O’E
V’E - uo| — |-ue| —- |=0. I
“(atj u[atzJ M

Equation (I) is Wave Equation for Electric Field

5.3.1 Wave Equation for Magnetic Field

Ampere’s law in point form is given by
VxH= GE+£(8—EJ.
ot

Taking curl on both sides

Vx(VxH)=V><[0'E+saa—f}.

=G(V><E)+8(VX8—E) (1)
ot
OoH

But, VxE = —u (Ej (2)

For 2" term in equation (1), we have,

2
an_E:M:i{_ﬂa_H}:_ I H 3)
ot ot ot ot ot

Substituting equation (2) and (3), in equation (1), we have
2
Vx(VxH)= o{—u(aa—lj)}r{—u(aa:jﬂ.
oH o°H
= _uo| ZL |- 4
[.LO'( at) ,us( ¥ J “)
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LHS =VxVxH =V(V-H)-V*H.
ButVeB=V.uH=0 = uV-H=0
= V-H=0(as u#0)

= VxVxH=-V*H. (5)
Putting equation (5) in (4),
oH O’H
-V’H =- — |- .
HG( ot ) ME( o’ )
oH O°H
= V*H - uc (Ej —ue[ v j =0. an

Equation (II) is Wave Equation for Magnetic Field. (I) and (II) are General Wave Equations. (ie) Wave
equation for Free Space.

5.3.2 Wave Equation for Dielectric

For a dielectric; conductivity o = 0, and charge density p = 0.
Substituting this in equations (I) and (II) we get,

’E
V’E — ug| — |=0. (1)
{5)
Similarly,
2
V*H - ,ue(a—l;[j =0. Iv)
ot
[as u, =1,¢, =1,for free space] 1 = 1, 1ty = Ly €=¢¢,=¢€, and =v
Ho&
Loy W)
Ho&y
Equations (III) and (IV) can be written as
2
V’E ; B_ZE =
[ 1 j ot
Ho&
1 (0°E
>VE-— =0 A
V2 ( atZ ] ( )
2
Vi 1 d 12-1 -0
1 ot
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= vH-L o'H =0 (B)
v\ o

Speed of electromagnetic wave is dependent on the medium and is given by, v =

1
VHo€g
5.3.3 Wave Propagation in Conducting Medium??>*

Wave equation for conducting medium

oE

2
VZE—yG(—j—,uea—E—

v (M

ot
To get Phasor form, substitute,

o . >
5 = §=sz2=—w2- 2)

Substituting equation (2) in equation (1), we get.
VPE+ue j°0’E — uojok = 0.
V?E — jo(UoE + e joE) = 0
V’E - jou(o + joe)E =0
V’E-y’E=0
where,
Y’ = jou(o + joe) A3)
Y = propagation constant and is a complex number.
y=a+jp. @
where, o = attenuation constant.
B = phase shift.

y=a+jf=jou(o+ jwe)
(oc+j/3)2 = jou(o + jwe)

o’ +(jB) +20(jP) = jou(o + joe)

2Derive the Expression for an intrinsic impedance, propagation constant and velocity of a Plane Electromagnetic wave
when propagated in

(1) a perfect medium (8)

(i) Conducting media and Good conductor. ®)

(A.U. B.E/B.Tech; May/June 2014; 3rd Sem; EEE — EMT; EE 2202; Reg — 2008).

3From the Maxwell’s equation, derive the electromagnetic wave equation in conducting medium for E and H fields.

(10)

(A.U. B.E/B.Tech; Nov/Dec 2010; 4th Sem; EEE — EMT; EC 2253; Reg — 2008).
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o’ — B +2jof = jouc —w’ue.

(5)
Equating the real and imaginary parts
o’ - =-0'ue. (6)
203 = wuo. (7)
Now let’s find the value of & and .
o’ +B2 _ \/(062 _ﬁz)z +4O£2ﬁ2
= J(~0*ue) +(ouo)’
cx2+ﬁ2=\/w4,u282+w2,u202 (8)
2.2
Adding equations (6) and (8), we have, = 2% = —@’fi & + \/w“ (uz e+ “wf ]
202 = —? 42 el o’
=—0UE+ (O U E | 1+——
o€
2
= —wzue+\/a)4u2 e [1+ C; - j
0N

w* &’

a2 2 2
o = O HE OHE |, ?2
2 2 W e
2 2
:+w He 1+ (2; > | =1
2 0 e
2
o
o= J[ [1+w282j_1]
1

&
oo s

*(a) Derive the wave equations from Maxwell's equations. Give the illustration for plane waves in good conductors.

(16)
(A.U. B.E/B.Tech; Nov/Dec 2013; 4th Sem; ECE — EC; EC 2253; Reg — 2008).

=—’'ue+w’ue [1+

QN
N—

| I

In a similar way, we can find S.
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5.4 WAVE PROPAGATION IN A LOSSLESS MEDIUM OR WAVE
PROPAGATION IN FREE SPACE OR DIELECTRIC®

I Approach

Here conductivity, c=0

)

. (1)

Hence, V*E = uE

Phasor value of E,
E = E(x,t) = Re[E(x) e’ ] )
Put equation (2) in equation (1),
V’Re[ E(x)-e™ | = ue 3722 Re[ E(x)-™ ]
V’Re[ E(x)-e™ | = peRe[ Ee' (jo)(jo)]
V’E = ueRe[—szej“”] =-’ue Re[Eef“"].
VE=-0'ueE (v E=E(x.0)= Re[E(x)-e-/’“”])

VE+w’ueE=0 3)

Wave equation for a free space/dielectric/or loss less medium is essentially Vector Helmholtz Equation,
given by

VE+B*E=0
B’ = uew’; B =(Jue)- w.

B = Phase shift constant.

0] 1
Velocity, v = — = —

B ue
If wave propagates in x direction,

O’E

2
X

+B*E=0. 4)

The solution of Eq. (4) is
E=Ce P +Ce’™

II Approach
Let’s take the same equation,

O*FE
V2E = ue .
u (atz ] (D

SExplain in detail the behavior of plane waves in lossless medium.
(A.U. B.E/B.Tech; Nov/Dec 2011; 3rd Sem; EEE — EMT; EE 2202; Reg — 2008).
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Let £ = E(x,t) = E(x)-cost.

= 2—? = E(x)-(—sinwt)- o.
2
665 =E(x)-(—w)-(cosar) .

= —E(x)-@* cos at. (2)
=-w’E (v E=E(x,t)=E(x)-cosar)

Considering that wave propagates in x-direction and substituting (2) in equation (1), we have,

O’E 5
— = Ue[-w°E
o M [ ]
= —uew’E.
2
E
ot UED'E =0 3)

(glf}rﬂzb: =0.
where 8 = (\/E)w
Generalizing the equation we have, V*E + uew’E = 0.
V’E+B’E =0.

where, = (\/E)a)

III Approach
Let’s take E(x,t) = E(x)-sin ¢, and prove that we get the same result
’E
V’E = ue : (1

Let, E =FE(x,t)= E(x)-sint.

aa—l: =E(x)-cosat-w = w E(x)coswt.
0’E . ) .
? =@ E(x)(-sinwt)w=—-w"E(x)-sinwt.
O’E
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Putting (2) in equation (1), we have
V’E = ,ue(—a)zE) =—uew’E =-B°E
=>VE+B’E=0,
Where, 8= (\/E)w

The beauty lies is the fact that irrespective of the assumption that wave is a function of “cos” or “sine”, we
get the same result.

5.4.1 Wave Propagating in a Conductor/Conducting Medium

oE ’E
VZE—MG(E)—MS(?j=O. (1)

Wave equation is given by,

Put £=E(x,t) = E(x)-sinwt

= (%—f) = E(x)-coswt- .

2

(667?] = E(x)(-sinot)o.
= —w’E(x)-sint.

O°E

or’

(8_Ej = w-E(x)coswt.
ot

=-0’E(x,t)=-0"E 2

(aa—f) = WE(x)-[jsinat]- (- cosr = jsinar)

= jwE(x)sinot. = joE (x,t)
Substituting equations (2) and (3) in equation (1), we have
V’E - uo| joE]- ue[—sz] =0.
V?E — jUCWE + Uew’E = 0.
VE - jo[uo + joue)E = 0.
V2E - jou[o + joe]E =0. “)

V’E-y’E=0
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where, y=./joulo+ jwe]

cos 0 cos 0
(=] sin )
.- 0 (=—jcos )
sin 6 sin 6
cos 0 cos 0
~ ~—sinB € /
) _/ ‘ 0
~— sin ©
Figure 5.11 Cos 6 and sin 6 waveforms.
5.4.2 1I Approach®
Let’s take £ = E(x, t) = E(x). cos of.
OF (&°E)
V’E - o(—]— el—|=0 1
Holar) TR o M

E(x,t)=E(x)-cosax.
(2—1;:) = E(x)-(-sinwt)- .
=—@ E(x)sinot

(E)Z_Ej = —wE(x)(coswt)- @.

= —w’E(x)-coswt = -0 E(x,1)

O’E 2
(?] =-wE. )
(6_EJ = - E(x)[—jcoswt]
ot
oE . . ; i
(gj = WE(x)- jcosof = joE(x)cos ot = joE (x,t) = joE 3)

Derive the relationship between electric field and magnetic field. Derive the wave equation for magnetic field in phasor
form. (16)
(A.U. B.E/B.Tech; Nov/Dec 2013; 3rd Sem; EEE — EMT; EE 2202; Reg — 2008).
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Substituting equations (2) and (3) in equation (1), we have.

V?E — o[ jowE] - ue[-w’*E] = 0.
= V’E — jUcwE + uew’E = 0.
V2E — jou[o + jwe]E=0

= V’E-y’E =0.

where, y =/ jou[o + jowe]

5.5

WAVE PARAMETER IN A GOOD DIELECTRIC

For a good dielectric, the displacement current is more compared to conduction current. Hence

Chapter 5.indd 185

1 . .
—£ <1 for good dielectric.
D

c

J,  OE,sinot

Jp - eE wcoswt
JC

RMS value of —= is given by
']D
J._O
J, €Ew
L _O
o, EO

o <1 [(i.e.) o < ; for a very good dielectric]
e e
UE o’
Now, o = @ (—j 1+ —— -1
2 e
l 1
o> ) o’ . A
I+——| =|l+——=||(1+4)?*=|1+— | ford <1
[ w*e? 20%€? (1+4) ( 2) of
UE o’
o=,/ —[|1+=—F75-1
2 2m°¢
eV o ) o’
:“’(#_)'L zz):wJ“z
2/ \2w’e 4w°e

e (B0
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e L -4y ford<i
WEJ 8w’e” || (1+A)

(72

. C 10/
Intrinsic or characteristic impedance, 1 = JO!

(0 + jwe)

For a perfect dielectric, conductivity o = 0,

n= [Ej { M = \/E (Taking o= 0)}
€ \ jwe €
jou _ H

jwe[“,;g] _ E[ch‘oe}
& -]

For a conductor, n =
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5.5.1 Wave Parameter in a Good Conductor”’

a:w\/(ﬁ)[ 1+c;‘_22_1] (1
2 (0N

for a good conductor,

J
c=9 51, (> = very greater than).
E

D

2

o) >»1.  (>» = very very greater than).

o5 %)
5

—> 1
w

o)) %)

%)

Therefore, equation (1) becomes,

e

[\

=

p=o

As,

. o 0]
Velocity of wave, v = (—j =

S

"Discuss the wave motion in good conductors. ®)
(A.U. B.E/B.Tech; Apr/Mar 2010; 4th Sem; ECE — EC 2253; EMF; Reg — 2008)
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(0 + joe) \/jws[u.c } ja)s[0+.6 }
Jwe Jwe

( 1 is negligible compared to (i)j
e

_ \/ jou | jou jou

_ \/ngth ] _ \/[]Zﬂ)

JWE

5.6 SKIN EFFECT

. 1 . . . .
The depth upto which the wave has been attenuated to (—j or approximately 37% of its original value is

e
called as skin depth or depth of penetration. Let that depth be “5”,
By definition,
w1
e =—=¢ =0.3678
e
x=0
se®@=e’ =ad=1
1
=0=—
o
1
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For a good conductor, o = (%)

2
N
\/2@’#0 J(f o)
2

Skin depth decreases with increase in frequency.

E =E e *-cos(ot — fBz)a,.
1
a=p= 3 for a good conductor.

= E =E, e -cos(wt —(z/5)]-a,.
Electric field E undergoes exponential dampening.

X

0368 E,,

Figure 5.12 Skin effect.

Q-1. A uniform plane wave with £ = XE  propagates in a loss-less dielectric medium (g, =4, 4 =1,6 = 0) in
z direction ata frequency 100 MHz. Assuming £, is sinusoidal withamplitude 0.1 mV/mat# =0 and z = 0,
write the instantaneous expression for £ and H fields. Sketch the waveforms.

E=aE +ad,E +a.E..
=a,E, [E,=E =0].
E=ad, E =a, E,sinot

=0.1x107sin(27r x 100 x 10° -£)@, V/m
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n= (ﬁ) - [Bo e _60g,
£ g, €,

. E
H=a,H; =H =|—*|
¥y y y n

_0.1x107

H sin(27 x100x10°7)-d, .

= 0.53% 107 sin(27 x100x10°7) 4, A/m

e

1% 1078 sec

Figure 5.13 Plane wave.

Q-2. Explain the significance of Poynting vector. For a uniform plane wave propagating in a loss-less
medium in z-direction, the electric field is given by E(z) =a, E e’ A2 Find the Poynting vector.

P=ExH
P = Power density = Rate of energy flow/unit area.

E(z)=a,-Eye'*
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